Μη Γραμμική Ακουστική

Εφαρμογή Μη Γραμμικής Ακουστικής

Παρακολούθηση σε πραγματικό χρόνο της
 βλάβης λόγω κόπωσης σε κράματα τιτανίου

Ακουστικός χαρακτηρισμός της κόπωσης

<u>Γραμμική Ακουστική</u>

a. Small displacement amplitudes

- **b.** Harmonic motion
- c. Hooke's law

Linear wave equation

Velocity/Modulus/

Elastic constants c_{ii}

Attenuation/Damping

Κόπωση: Continuous changes in the microstructure due to cyclic loading (dislocations)

Influence of Fatigue on Change 1 – 2 % Sound Velocity / Elastic Modulus

Αλληλεπίδραση των ακουστικών κυμάτων με τις διαταραχές

Acoustic Wave Vibrates Dislocation Segments

Vibrating String Model (Granato and Lucke)

Increase attenuation

Small change in velocity

Ultrasonic Attenuation:

Depends on Frequency and Grain size

Changes in attenuation cannot be attributed only to fatigue

Μη γραμμική Ακουστική

- a. Finite displacement amplitudes
- **b.** Anharmonic motion
- c. Hooke's law with second order term

Nonlinear Wave Equation

Second and higher order elastic constants Nonlinearity Parameter β

Longitudinal wave in isotropic material

$$\beta = [3 + C_{111}/C_{11}] = (2V_1^2/a\pi f^2)(A_2/A_1^2)$$

- v₁ = Longitudinal sound velocity
- **C**₁₁₁ = **Third order elastic constant**
- **C**₁₁ = Second order elastic constant

Μη γραμμική αλληλεπίδραση των ακουστικών κυμάτων με τις διαταραχές

Modifications to Vibrating String model

- Addition of nonlinear vibration of dislocations
- Inclusion of vibration of dislocation structures

$$\begin{array}{l} \beta = \beta_{lattice} + vf_{dip}\beta_{dip} + etc. \\ \beta_{lattice} \end{array} \\ \begin{array}{l} \beta_{lattice} \end{array} \\ \begin{array}{l} vf_{dip} \end{array} \\ \begin{array}{l} volume fraction of dislocation dipoles \\ \end{array} \\ \begin{array}{l} \beta_{dip} \end{array} \end{array} \\ \end{array}$$

Δυσκολίες σε παραδοσιακά πειράματα μη-γραμμικής ακουστικής

- Χρονοβόρα
- Η μικροδομή των δοκιμίων θεωρείται ταυτόσημη
- Δεν υπάρχει δυνατότητα για πραγματοποίηση
 των πειραμάτων σε πραγματικό χρόνο

Μη γραμμική ακουστική και δεύτερη αρμονική

Πειραματικές Τεχνικές

Μέτρηση της δεύτερης αρμονικής

- **1.** Capacitive Detection: Absolute amplitude and β
- 2. Piezo-Electric Detection: Relative β (f-2f method)
- 3. Optical Detection: Absolute amplitude

Capacitive Detection και Μέθοδος f-2f

Capacitive Detection

- Measurement of absolute amplitude
- Absolute Nonlinearity Parameter, β

Not possible to use with fatigue machine

Piezo-Electric Detection / f-2f Method

Measurement of Relative amplitudes (voltage)

Calibration needed for absolute nonlinearity parameter, β

Absolute Nonlinearity Parameter (β) = Cal.Const x Nonlinear Acoustic Factor

<u>Μπορεί να σχεδιαστεί να μετρά κατά την κόπωση</u>

Πειραματική διάταξη

Capacitive Detection

Μετρήσεις (f/2f) σε πραγματικό χρόνο Μη γραμμική παράμετρος β

$$\beta = \frac{8}{ak^2} \left(\frac{A_2}{A_1^2} \right)$$

Normalized by β_o

(nonlinear parameter of the material at the virgin state)

Προετοιμασία δοκιμίου

D=12.7 mm; d=6.5 mm; R=100 mm; L1=20 mm; L2= 54 mm

Ends of the sample polished flat and parallel LiNbO₃, 0.25" dia. longitudinal wave transducers

Παρακολούθηση κόπωσης σε πραγματικό χρόνο

- Modified the fatigue machine grips
- Developed special transducer holder
- Automated the measurement of acoustic amplitude
- Interfaced acoustic measurements with fatigue machine
- Developed software to automate the measurements and controls

Διαδικασία μέτρησης

- 1. Determine fatigue life of a dogbone sample (Load: 865 MPa) R ratio : 0.1, Cyclic loading frequency: 1 Hz Number of cycles to break: 35000
- 2. Choose another dogbone sample from the same batch and measure longitudinal velocity
- 3. Measure ultrasonic attenuation at 10 MHz.
- 4. Measure variation of second harmonic amplitude as a function of Fundamental.
- 5. Determine Nonlinear Parameter.
- 6. Load the sample in the MTS machine and fatigue. (10%, 20%, 30%, 40% etc ... of fatigue life)
- 7. Repeat measurements: velocity, attenuation, nonlinear parameter

Μεταβολή της ταχύτητας διαμηκών κυμάτων κατά την κόπωση

Μεταβολή της απόσβεσης κατά την κόπωση

Πλάτος δεύτερης αρμονικής ως προς τη βασική συχνότητα για διάφορα στάδια κόπωσης

Μεταβολή της μη γραμμικής παραμέτρου κατά την κόπωση

Παρακολούθηση κόπωσης με μη γραμμική ακουστική

Σταθερότητα μετρήσεων και γραμμικότητα του συστήματος

Long term stability of the amplitude measurements

Variation of second harmonic as a function of fundamental

Συνθήκες δοκιμής κόπωσης

- Maximum stress applied: 850 MPa, R ratio: 0.1
- Cyclic loading frequency: 1 Hz
- Measurement interval : 10 cycles
- Measurements performed at zero load
- A₁ and A₂ measured in real-time, as the sample was fatigued

Μεταβολή της ταχύτητας διαμηκών κυμάτων κατά την κόπωση

Μεταβολή της απόσβεσης κατά την κόπωση

Συσχετισμός ΤΕΜ και κανονικοποιημένης μηγραμμικότητας στο Ti-6Al-4V

Πυκνότητα διαταραχών και κανονικοποιημένη μη-γραμμικότητα στο Ti-6AI-4V

